EXPERIMENTO Nº 16

EXP-16.pdf - Ver 09/05//2012

EXPERIÊNCIA PARA MEDIR A VELOCIDADE RELATIVA DA TERRA

OBJETIVO

Medir a velocidade da Terra relativa ao 'Espaço' (Éter), através da variação do "Empuxo de Arquimedes" de um fluido 'polar', separado por um fluido 'apolar'.

PROCEDIMENTOS

Para medir as velocidades possíveis (va, vb, vc), injeta-se, na base do recipiente (ver figura), moléculas de H_2O e Nacl radioativas e mede-se o tempo para atingirem a superfície, cuja distância é conhecida.

O valor básico da densidade do fluido 'polar' deve ser medido durante a condição Vc (C).

Quando uma bolha passa pela primeira fotocélula (início de curso), dispara um cronômetro de precisão. E quando a mesma bolha passa pelo segundo sensor fotoelétrico (final de curso), pausa o cronômetro.

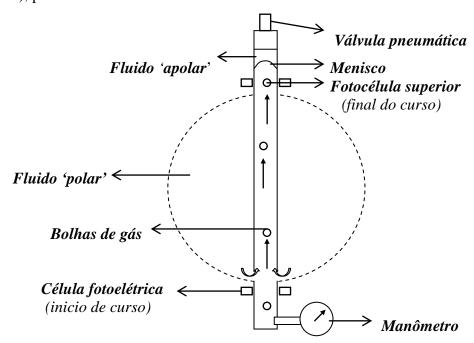


Fig. 11 – Síntese do conjunto experimental.

O movimento dos íons indica a natureza do campo (elétrico, magnético, gravitacional ou calorífico).

Como a massa é a soma dos micros movimentos fechados de um corpo e que possui uma Inércia = Zero, quando sua velocidade absoluta é Zero (0) e possui uma Inércia (I) = I, quando $Vabs \neq 0$

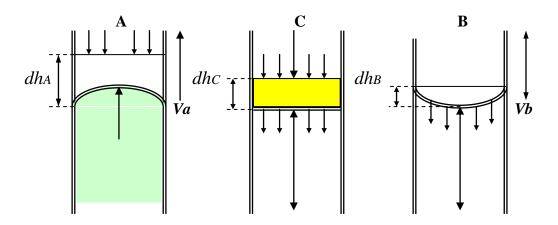


Fig. 12 – Distribuição representativa das forças.

Legenda:

 $=> \text{Solução apolar.} \qquad \begin{array}{c} H \\ (A) \\ (C) \\ (B) \\ (B) \\ O \\ H \end{array}$

Convenções:

Forças convergentes \Rightarrow (-)

Forças divergentes =>(+)

Velocidades possíveis => Va, Vb e Vc

'Forças convergentes': peso, pressão, contração, atrito convergente.

'Forças divergentes': força centrífuga, empuxo, dilatação, atrito divergente.

INFORMAÇÕES REFERENTES

Energia interna > Energia externa => (A)

Volume
$$Vc = \pi \cdot R_c^2 dh \Rightarrow (\mathbf{C})$$

Massa
$$ma = PcVc \Rightarrow (\mathbf{C})$$

Densidade
$$\rho_C = m_C / \pi \cdot R_C^2 dh \Rightarrow (\mathbf{C})$$

 $\rho=m_C\,g_0\to g_0=$ aceleração da gravidade quando as 'forças divergentes' (fd) são iguais às 'forças convergentes' (fc).

A massa do fluido apolar $\left(m_a\right)$ é constante = $\rho_a dV_f$, onde dV_f é a variação do volume apenas na forma, mantendo o conteúdo constante.

Como o movimento é uma variação de 'Espaço' que pode ser representada por um vetor (\vec{M}) , o qual indica de que modo o 'Espaço' variou, cujo 'módulo' é o valor absoluto da velocidade e a direção é um ângulo $\phi \cdot (x,y,z)$.

Em (C), quando
$$Vc = 0 \Rightarrow fd = fc$$
.

Então, as
$$fd = fc = \vec{p} + \vec{\rho} + d\vec{V}c + \vec{A}c = fc + \vec{E} + d\vec{V}d + Ac$$
,

onde (dVc) é a variação de volume, que é igual $-d\vec{V}d$

* A inércia é a resultante do somatório das 'micro rotações' dos átomos e suas partículas, somando as reações das emissões pulsáteis das 'Imagens' em todas as direções e, sentido divergente.

Link para o Experimento N°17